SILVIA GRECO (*) (**), ANNAMARIA IENCO (**), MARCO INFUSINO (*)
FRANCESCO LUIGI LEONETTI (*) - STEFANO SCALERCIO (*)

NEW RECORDS OF MOTHS ELUCIDATE THE IMPORTANCE OF FORESTS AS BIODIVERSITY HOT-SPOTS IN CENTRAL MEDITERRANEAN LANDSCAPES (LEPIDOPTERA)

(*) Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, centro di ricerca Foreste e Legno (CREA-FL), Rende, Italy
(**) Via Castelvetere 40, 89041 Caulonia, Reggio Calabria, Italy
(°) Corresponding author: silvia.greco@crea.gov.it

Greco S., Ienco A., Infusino M., Leonetti F.L., Scalercio S. – New records of moths elucidate the importance of forests as biodiversity hot-spots in central Mediterranean landscapes (Lepidoptera).

In this paper we report new faunistic findings concerning 15 moth species collected in forested habitats of Calabria and Sicily regions, South Italy. Most interesting records concerned Eupithecia trisignaria and Orectis proboscidata, both recorded for the first time in southern Italy. Species with larval biology linked to the forest cover were locally common, whilst species linked to herbaceous plants and shrubs were often collected as singletons or in one locality, showing smaller populations. A study of a 658bp long sequence of the mitochondrial S′ cytochrome oxidase gene, subunit 1 (COI) (barcoding analysis) was performed for five species, two of them showing a divergence from closest populations near to 1%, one a 2% divergence from northern populations, and two other species a perfect identity with European populations. This study reinforced the role of forest habitats as biodiversity hot-spots in the Mediterranean Basin and the importance of the Italian peninsula for biodiversity conservation at European scale as an increased number of endemic or sub-endemic taxa and populations with endemic genetic lineages are recognized, underlining the existence of ongoing evolutionary processes. In the light of these results, faunistic surveys in forest ecosystems are strongly needed to define sustainable management strategies.

KEY WORDS: barcoding, faunistic inventories, forest management, protected areas, Italy.

INTRODUCTION

Ecological sustainability of forests is nowadays one of the main goal of silvicultural management, as they provide several ecosystem services among which biodiversity conservation is increasingly emphasized (LINDNER et al., 2000). Forests represent the climax stage of vegetation for the largest portion of Italian peninsula, but human activities largely fragmented their cover for thousands of years, increasing the proportion of non-forested habitats. Recently, human activities in interior areas were abandoned and, as a consequence, forested surfaces increased on large territories with consequences on biodiversity (MARULL et al., 2015) and on the economic profitability due to an increased wood availability. Then, it is very important in this phase to take into account both conservation and economic interests in order to identify areas with different vocations and to favour a sustainable management of forests. Timber production is nowadays mostly concentrated within mountain forests, particularly vulnerable ecosystems as the increasing frequency of extreme climatic events due to climatic changes can strongly affect tree physiology (KRAMER et al., 2000; LINDNER et al., 2010). Furthermore, recent studies underlined the importance of Mediterranean forest as biodiversity reservoirs (WALETOWSKI et al., 2014; INFUSINO et al., 2016; 2017a), but how really important they are is not clear enough as several forest types and their latitudinal variations are not systematically investigated.

Under these perspectives, biodiversity inventories become a basic data for identifying areas with a prominent conservation interest and areas that can be designed primarily for timber production.

Indicator taxa are useful tools for exploring biodiversity patterns saving time and money. Among them, the order of Lepidoptera was often used as a bioindicator of forested habitats as it represents a large portion of the total animal biomass and diversity, occupying many crucial ecological niches (SUMMERVILLE et al., 2004; SUMMERVILLE and CRIST, 2008). In Italy, biodiversity inventories for Lepidoptera are now available for several areas of conservation interest, e.g. the Parco Naturale delle Canne di Marcarolo in Piedmont (BALDEZZONE et al., 2013), the Tenuta Presidenziale di Castelporziano in Latiun (ZILLI et al., 2001), the silver fir forest of Rosello between Abruzzi and Molise regions (SCARRETTA and ZAHM, 2002), the silver fir forest of Serra San Bruno and the Vivaio Sbanditi and in Calabria (INFUSINO and SCALERCIO, 2017; INFUSINO et al., 2017b) and many more (see ZILLI, 2014; 2018). Unfortunately, methods and sampling efforts were usually not comparable across studies and only in few cases exact locations of sampled sites were provided, making it difficult to compare quantitative results and to repeat the monitoring over time. Nevertheless, faunistic lists provided by these inventories were enough to demonstrate that Mediterranean forests, especially mountain ones, are particularly important from a conservation point of view as they represent very important biodiversity hot-spots for Lepidoptera, inhabiting endemic species, relict populations of Euro-Asiatic species, populations with unique genetic lineages (SCALERCIO et al., 2016; INFUSINO et al., 2016, 2018).
This paper would be a further contribution toward a better understanding of the role of forest ecosystems as biodiversity reservoirs. We reported the presence of species with high biogeographic and conservation interest noted during surveys carried out systematically in mountain forests and occasionally in other habitats of Calabria and Sicily, the southernmost Italian regions positioned in the middle of the Mediterranean Basin. The presence of these species was discussed from biogeographic and conservation perspectives, and the importance of a sustainable forest management was also underlined.

MATERIAL AND METHODS

Results showed in this paper were collected from systematic and occasional surveys of moths in different forested habitat of Calabrian region, southern Italy.

Systematic surveys were devoted to characterize moth community of a given forest type in order to assess functional relationships of forest attributes, such as tree species composition, management, age, with moth diversity and abundance. This kind of survey was carried out by the authors in several forest type during last years (GRECO et al., 2016; INFUSINO et al., 2016; 2017a). In this paper we synthesized the most interesting biogeographic results obtained during the last year of monitoring within beech forests and Acer-dominated forests included in the Pollino National Park, Calabrian black pine forests and Alnus-dominated woodlots included in the Sila National Park, and mixed forests of both protected areas. Sampplings were carried out using UV LED light traps (INFUSINO et al., 2017c) powered by portable batteries. Traps were settled up one night per month through the entire flight season of moth at mountain altitude, under weather conditions favourable to moth activity and trap efficiency, i.e. low wind speed, temperatures near the average of a given period, low or absent moonlight, low or absent rain.

Occasional surveys interested Calabria and Sicily regions. In Calabria we surveyed a clearing within broadleaved forests in the Pollino National Park by diurnal visual census and a sparse Mediterranean maquis along the Ionian coast using a 160W mercury vapor lamp as light source for a moth trap. In Sicily we surveyed a Taxus baccata-dominated forest on the Nebrodi Mountains using a 160W mercury vapor lamp reflecting on a white sheet for attracting moth.

Detailed data concerning sites and nights of both kind of surveys were reported in the List of species section.

Identification was carried out using specialised literature concerning Lasiocampidae (BERTACCINI et al., 1995), Geometridae (HAUSMANN, 2001, 2004; MIROV, 2003; HAUSMANN and VIDALEPP, 2012), Erebidae (BERIO, 1991; BERTACCINI et al., 1995, 1997), and Noctuidae (BERIO, 1985). Identification of most difficult species was carried out after dissection of genitalia. Nomenclature followed the Fauna Europaea available online at www.faunaeur.org. Specimens and slides of genitalia were preserved in the Lepidoptera collection of the Research Centre for Forestry and Wood, Rende, Italy.

Few specimens were submitted to barcoding, an analysis of the 658bp long sequence of the mitochondrial 5′-cytochrome oxidase gene, subunit 1 (COI), submitting tissue samples to the standard procedures of the Canadian Centre for DNA Barcoding (CCDB). This sequence, considered a standard marker for species identification of most animals, allowed us to search for genetic divergences of southern Italy population of analysed species from other European populations, by comparing sequences deposited in the database of Barcoding of Life Database (BOLD) data systems (RATNASINGHAM and HEBERT, 2007). For any barcoded specimen we reported the following genetic data: BOLD specimen ID, BOLD sequence ID, Barcode Index Number (BIN), sequence length, genetic similarity with the nearest sequence deposited in BOLD and its collecting site.

RESULTS

A total of 15 species of biogeographic interest has been collected during our study: seven Geometridae, one Lasiocampidae, three Erebidae, four Noctuidae (Fig. I). Among them, eight species were collected as singletons and further two in only one locality, whilst the others were collected in more than one locality. The Acer-dominated forest provided nine species new for the Calabria region, whilst beech, Calabrian black pine, Alnus glutinosa, Taxus baccata, and mixed forests provided one species each new for the regional fauna. Remaining species were collected in a clearing within broadleaved forests and in a sparse Mediterranean maquis.

Five specimens belonging to five species were submitted to DNA barcoding analyses, recovering four full-length sequences (658bp) and a somewhat shorter one (630bp).

LIST OF SPECIES

Poecilocampa populi (Linnaeus, 1758) (Lasiocampidae) (Fig. I, 1)

HABITAT – Beech forest of the Pollino National Park.

RECORDS – Serrapaolo, Saracena (CS), 990m, 39.8225°N-16.0911°E, 18.XI.2015 (1m) (dissected, slide CREA-0182, Fig. II, 1); Serra Ambruna, Saracena (CS), 1035m, 39.8234°N-16.0768°E, 23.XI.2017 (1m); Timpone Magara, Saracena (CS), 1460m, 39.7914°N-16.0503°E, 23.XI.2017 (1f); idem, 1465m, 39.7939°N-16.0520°E, 23.XI.2017 (1f).

Alsophila acceraria (Denis & Schiffermüller, 1775) (Geometridae) (Fig. I, 2)

HABITAT – Calabrian black pine forest of the Sila National Park.

RECORDS – Serra Cannile, Spezzano Sila (CS), 1433m, 39.3465°N-16.4091°E, 24.XI.2017 (1m).

Emmilitis pygmaearia (Hübner, 1809) (Geometridae) (Fig. I, 3)

HABITAT – Clearings in broadleaved forests of the Pollino National Park.

RECORDS – Timpone Montillo, Alessandria del Carretto (CS), 960m, 39.9578°N-16.3754°E, 19.V.2017 (1m, 1f).

Cyclophora albiocellaria (Hübner, 1789) (Geometridae) (Fig. I, 4)

HABITAT – Acer forest of the Pollino National Park.

RECORDS – Balestrieri, Alessandria del Carretto (CS), 1371m, 39.9275°N-16.3624°E, 21.VI.2017 (1m), 17.VIII.2017 (1f); Difesa di Privitera, Alessandria del
Anticlea derivata (Denis & Schiffermüller, 1775) (Geometridae) (Fig. I, 5)

HABITAT – Acer forest of the Pollino National Park.

RECORDS – Sciortaglie, Alessandria del Carretto (CS), 1246m, 39.9313°N-16.3508°E, 18.IV.2017 (1m).
Eupithecia inturbata (Hübner, 1817) (Geometridae) (Fig. I, 6)

Habitat – *Acer* forest of the Pollino National Park.

Records – Vallone Lupara, Alessandria del Carretto (CS), 1305m, 39.9259°N-16.3603°E, 19.VII.2017 (2f) (1 dissected); Difesa di Privitera, Alessandria del Carretto (CS), 1285m, 39.9274°N-16.3572°E, 19.VII.2017 (1m, 2f) (1 barcoded); idem, 1291m, 39.9274°N-16.3572°E, 17.VIII.2017 (1f) (dissected); Sciortaglie, Alessandria del Carretto (CS), 1253m, 39.9291°N-16.3532°E, 17.VIII.2017 (2f) (1 dissected); idem, 1246m, 39.9313°N-16.3508°E, 18.IX.2017 (1f) (dissected).

Eupithecia denotata (Hübner, 1813) (Geometridae) (Fig. I, 7)

Habitat – *Acer* forest of the Pollino National Park.

Records – Vallone Lupara, Alessandria del Carretto (CS), 1305m, 39.9259°N-16.3603°E, 19.VII.2017 (2f) (1 dissected); Difesa di Privitera, Alessandria del Carretto (CS), 1285m, 39.9274°N-16.3572°E, 19.VII.2017 (1m, 2f) (1 barcoded); idem, 1291m, 39.9274°N-16.3572°E, 17.VIII.2017 (1f) (dissected); Sciortaglie, Alessandria del Carretto (CS), 1253m, 39.9291°N-16.3532°E, 17.VIII.2017 (2f) (1 dissected); idem, 1246m, 39.9313°N-16.3508°E, 18.IX.2017 (1f) (dissected).
Eupithecia trisignaria
Herrich-Schäffer, 1848
(Geometridae) (Fig. I, 8)

Habitat – Alnus glutinosa forest of the Sila National Park.
Records – Sciortaglie, Alessandria del Carretto (CS), 1253m, 39.9291°N-16.3532°E, 17.VIII.2017 (1m).
Genetic data – LEP-SS-00645, BCLEP195-17, BOLD: AAJ2393, 658bp, 100% of similarity with specimens collected in several European countries.

Leucoma salicis
(Linnaeus, 1758) (Erebidae)
(Fig. I, 9)

Habitat – Mixed forests of Pollino and Sila National Parks.
Records – Sciortaglie, Alessandria del Carretto (CS), 1253m, 39.9291°N-16.3532°E, 21.VI.2017 (1m); Lago Cecita, Spezzano della Sila (CS), 1176m, 39.3864°N-16.5516°E, 30.VII.2013 (1m); Montagna Grande, San Giovanni in Fiore (CS), 1355m, 39.2717°N-16.6062°E, 5.VII.2016 (1m).
Genetic data – LEP-SS-00720, BCLEP267-17, BOLD: AAC7414, 658bp, 100% of similarity with specimens collected in several European countries.

Apaidia rufeola
(Rambur, 1832) (Erebidae)
(Fig. I, 10)

Habitat – Sparse Mediterranean maquis.
Records – Palizzi Marina (RC), 3m, 37.9193°N-16.0060°E, 15.V.2015 (1m).
Genetic data – LEP-SS-00629, BCLEP179-17, BOLD: AAC7414, 658bp, 100% of similarity with specimens collected in several European countries.

Orectis proboscidata
(Herrich-Schäffer, 1851) (Erebidae)
(Fig. I, 11)

Habitat – Acer forest of the Pollino National Park.
Records – Vallone Lupara, Alessandria del Carretto (CS), 1345m, 39.9245°N-16.3609°E, 17.VIII.2017 (1m) (barcoded); Tappaiolo, Alessandria del Carretto (CS), 1305m, 39.9259°N-16.3471°E, 23.III.2017 (1m) (barcoded); Tappaiolo, Alessandria del Carretto (CS), 1253m, 39.9358°N-16.3471°E, 18.IX.2017 (1m); Bosco della Tassita, Caronia (ME), 1430m, 37.90°N-14.50°E, 13.X.2009 (3f).
Genetic data – LEP-SS-00629, BCLEP179-17, BOLD: AAC7414, 658bp, 100% of similarity with specimens collected in several European countries.

Atethmia ambusta
(Denis & Schiffermüller, 1775) (Noctuidae) (Fig. I, 12)

Habitat – Acer forest of the Pollino National Park.
Records – Difesa di Privitera, Alessandria del Carretto (CS), 1285m, 39.9274°N-16.3572°E, 17.VIII.2017 (1m).
Species perspectives
Most interesting findings certainly concerned the Euro-Siberian Eupithecia trisignaria and the South-East Euro-Anatolian Orectis proboscidata which had never found before in southern Italy.
Eupithecia trisignaria is widespread in Central and Northern Europe, with scattered populations towards the south. In Italy it is known from the Alps and for very few localities in the northern and central Apennines (PARENZAN and PORCELLI, 2007). The nearest known population to those found in the Sila Massif is about 370 km northward, at 1250 metres of altitude but authors did not provide any habitat description (FLAMIGNI et al., 2002). Recently, the moth fauna of Sila Massif was intensively investigated (SALERCIO et al., 2008; INFUSINO et al., 2016; 2017a,b), but this species was never found before. This is probably due to the small population size, likely being restricted in its local range to the optimal habitat, here represented by a humid forest of Alnus glutinosa.

Orectis proboscidata has isolated populations in its range, found in Italy in the Alps, in one locality from central Apennines about one century ago (DANNEHL, 1927), and in a few Sicilian localities (BELLA and FIBIGER, 2009). The specimen we found is particularly important as it could reopen a question about the taxonomy of southernmost Italian populations. TURATI (1908) described Orectis barteli from Sicily, successively synonymized under O. proboscidata (ZILLI, 1996). Based on DNA barcoding analysis, Sicilian and Calabrian populations show a genetic divergence of about 2% from Alpine and Balkan populations, suggesting the need of further investigation on the taxonomy of southern Italian populations (Fig. III).
Very interesting was also the second finding of Agrochola orejoni in Italy, a species having a very disjunct range being present in Spain and in the Pollino Massif, Italy, where an endemic subspecies was described by PARENZAN (1982a), A. orejoni terranovae.

Other species represent new findings for the Calabrian region and Eupsilia transversa was new also from Sicily, all enlarging their range southward. Alsophila aceraria was erroneously reported from Calabria by FLAMIGNI et al. (2001), as FLAMIGNI and BASTIA (2003) clarified that it was a mistake in data transcription. Our data confirmed its presence in Calabria, where it was found in the Sila Massif. Lithophane semibrunnea was also recorded from Calabria in a previous paper (INFUSINO et al., 2017a), but it was due to a misidentification as the used reference literature (BERIO, 1985) shows vice-versa exchanged images for L. semibrunnea and L. socia. Our record is the first correctly attributed to L. semibrunnea in this region. Although Poecilocampa populii is known from the Pollino Massif since more than three decades (PARENZAN, 1982b), our finding in new localities of the same massif confirmed its presence with a population about 400 km apart from the nearest.

As discussed above, DNA barcoding analysis identified the population of O. proboscidata as the most diverging from Central and South-Eastern European populations. Other barcoded specimens showed a COI divergence varying from 0.92% for A. derivata to 0 for L. semibrunnea and Calabrian E. transversa, whilst E. inturbata diverged by 0.32%. We can hypothesize a more recent colonization of the Pollino Massif for less divergent species, and likely a longer isolation history for the most divergent.

HABITAT PERSPECTIVES

Systematic surveys carried out in the Acer-dominated forest provided most of the new records discussed in this paper. The main factor determining the relevance of this forest type was the lack of previous surveys in this peculiar forest, characterizing the Site of Community Importance IT9310019 Monte Sparviere, Pollino National Park. Five species of Acer are present in this forest (ROMA-MARZIO et al., 2016), thanks mainly to the local microclimate, soil and geomorphology. These factors favor the presence of well-established populations of Cyclophora albiciocellaria and Eupithecia inturbata, species having monophagous larvae on this tree genus (MIRONOV, 2003; HAUSMANN, 2004). The establishment of these populations is attributable not only to the presence of hostplants but also to the microclimatic conditions which characterize this area and to the biogeographic history of the Pollino Massif. In addition to the two above mentioned, most species found in this habitat have larvae feeding on deciduous trees, namely Eupsilia transversa, Aetheinia ambusta, Lithophane semibrunnea, and Leucoma salicis, found also in mixed forests of the Sila Massif. Only Eupithecia denotata, oligophagous mainly on Campanulaeae, and Orectis proboscidata, with larvae feeding on vegetal detritus, are not linked to trees for their larval development. Agrochola orejoni is known to be a forest species, but larval biology is unknown.

Other species linked to deciduous trees found in systematic surveys were Poecilocampa populii, found in a beech forest, and Alsophila aceraria, found in a forest dominated by Calabrian black pine, whilst Eupithecia trisignaria, the only species of interest found in Alnus glutinosa woods, is oligophagous on Apiaceae (MIRONOV, 2003).

Finally, occasional findings were not strictly linked to forests, as Emmiltis pygmeaaria inhabit xerothermophilous grasslands (HAUSMANN, 2004) and Apaidia rufeola coastal areas (BERTACCINI et al., 1995). Only the Sicilian finding of Eupsilia transversa is attributable to a woody plant feeder.

INFUSINO et al. (2016) found mid and late successional stages of forests more important than early successional stages of forests in sustaining lepidopteran diversity in managed mountain forests. This occurred also in the highly exploited chestnut forest, in which mature coppices inhabit many species of biogeographic and conservation interest. The results showed in this paper were consistent with those of INFUSINO et al. (2016), as they were mostly obtained in forests included in protected areas submitted to low perturbations. Nevertheless, some considerations concerning forest management can be carried out. In particular, the role of understory flora is underlined by the presence of isolated populations of important species linked to this forest layer. The species composition related to the undergrowth is also determined by microclimatic conditions favored by forest cover. Most ecological-oriented management strategies should take into account the effect of changes in forest cover on diversity and composition of understory flora as a key factor for sustaining biodiversity.

CONCLUSIONS

In this paper we report new finding concerning 15 moth species that clearly elucidate the role of forest habitats as biodiversity hot-spots, especially in the Mediterranean Basin. Most records enlarged the known species ranges...
southward, in a very significantly manner for Eupithecia trisignaria. As underlined by recent papers, the importance of Italian peninsula for biodiversity conservation at European scale is strategic as an increased number of endemic or sub-endemic taxa are recognized (ScaIercio et al., 2016; Infusino et al., 2018), most of which trophically linked to trees. Furthermore, some species show endemic genetic lineages in southern Italy (Trematerra et al., 2017; Infusino et al., 2017a), underlying the existence of ongoing evolutionary processes. In the light of these results, an extensive study of biodiversity hosted by forest ecosystems, accompanied by barcoding analyses, are strongly needed to define the biodiversity hosted within Mediterranean forest ecosystems in order to refine conservation strategies towards adequate management regimes.

ACKNOWLEDGEMENTS

The work was financially supported by the Pollino National Park (Project Studio pilota per il monitoraggio della biodiversità dei Lepidotteri in SIC forestali del Parco Nazionale del Pollino), the Sila National Park (Project II Barcoding delle farfalle nel Parco Nazionale della Sila: aree umide), the University of Tuscia (Project REFORM SUMFOREST), the Project “ALForLab” (PON03PE-00024_1) co-funded by the National Operational Programme for Research and Competitiveness (PON R&C) 2007-2013, through the European Regional Development Fund (ERDF) and national resource (Revolving Fund - Cohesion Action Plan (CAP) MIUR).

REFERENCES

Infusino M., Breihm G., Di Marco C., Scalercio S., 2017c. – Assessing the efficiency of UV LEDs as light sources for sampling the diversity of macro-moth. - European Journal of Entomology, 114: 25-33.

TRESMATERFA P., SCALERCEO S., COLACCI M., 2017 – Thaumetopaea hellenica sp.n and Thaumetopoea mediterranea sp.n. new taxa from Southern Europe (Lepidoptera Notontidae Thaumetopoienae). - Redia, 100: 3-10. http://dx.doi.org/10.19263/REDIA-100.17.01

ZILLI A., 2014 – Lepidoptera research in areas with high biodiversity potential in Italy. Lepidoptera Italica Vol. 1, Natura Edizioni Scientifiche, Bologna, Italy, 373 pp.